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Introduction 
•  Search is a key activity on the Internet 

–  13 billion queries a month (3500/sec) 

–  Growing rapidly (38% annually) 

•  Search Engines need to be Precise 
–  Increased user expectations from search results 

–  Not 200 links but few relevant documents 

•  Search Engines need to be Scalable 
–  Search engines deployed as distributed systems 

–  Newer methods make more computational demand 

•  Search Engines need to consume Low Energy 
–  Tens of Mega Watts (12.5 MW/year) 

–  Coarse-grained, task-parallel approach is insufficient 

•  Objective: Deploy meaning-based search to enhance search-quality while 
consuming less energy and meeting time constrains 

Precision 
Meaning-based search 

Low Energy 
Consumption 



Current Search Engines 
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Front-End Web App 

Index Servers Doc Servers 
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Query Processor Document Processor 
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Current Search Paradigm – Vector 
Method  

09/19/2011 5 

D1  =   sAmerican
1 V


American   +   sMan

1 V


Man   +   sate
1 V


ate   +   sIndian
1 V


Indian + sFood
1 V


Food

“The American man ate Indian food.” 

Scalar weight 
/ coefficient denoting 
relative importance of the 
term 

Descriptor 
representing 

meaning of the 
entire text 

Basis vector representing the 
term “American” 

•  Vector Methods can not differentiate between two 
documents containing the same keywords 

-  “American man ate Indian food” v/s “Indian man ate American food” 
-  Produces hundreds of irrelevant results – “no precision” 

-  Hundreds of redundant operations performed in the process 
-  Tens of MW of power consumed in the process 



Future Search paradigm - Tensor 
Method 
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•  Tensor methods differentiate documents containing same 
keywords 
-  Captures the relationship between terms 
-  At what cost? – Exponentially larger number of terms 
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Semantic Comparison using 
Tensors 
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1.  Identify common basis vectors 
2.  Multiply scalar coefficients 
3.  Find sum of all products 
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Key Steps in Semantic Computation 
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•  For two Tensors of size n1, n2, Search is O(n1.n2) or O(n1. log n2) 

•  Can we improve upon this?  



Bloom Filters 
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•  Bloom Filter – Enables Compact representation of a Set 
-  Parameters:  

•  Number of elements to be inserted (m) 
•  Size of the Bloom Filter (sizen) 
•  Number of Indices used to represent each element (k) 

-  Probability of false positives can be controlled 
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Details of Comparison 

Set of BF  
bit indices 

{ xi: 0 ≤ xi ≤ sizen } 

{ 0, 2,…5 } 

{…} 
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Coefficient table of Query Tensor (Table 2) 

Coefficient table of Doc Tensor (Table 1) Bloom filter of Doc Tensor 
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21 ++++=• jjii ssss

1.  Identify common 
basis vectors 
(filtered) 

2.  Multiply coefficients 

3.  Compute sum of 
products 
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Architecture Description - CUDA 
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•  CUDA 
-  Compute Unified Device Architecture 

-  Device Architecture spec 
-  An extension to C (library, API, 

compiler) 

•  GPGPU uses heterogeneous parallel 
computing model 
-  Kernel is called by host and run by GPU 
-  Each SIMD processor executes same 

instruction over different data elements in 
parallel 

-  Can process thousands of threads 
simultaneously.  

-  The number of logical threads and thread 
blocks surpasses the number of physical 
execution units 



Architecture Description – CUDA 
Memory Model 
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•  CUDA Memory Model 
-  Threads 

-  Registers (per thread) 
-  Local Memory (off-chip) 

-  Blocks 
-  Shared Memory 

 between threads 
-  Device 

-  Global Memory 
§  between kernels 

-  Constant Memory 
§  Read only, store 

invariants 
-  Texture Memory 

§  limited but can 
cache parts of 
Global Memory 



Semantic Comparison using 
CUDA 

15 

•  CUDA Programming 
Model 

•  Split a task into 
subtasks 

•  Divide input data into 
chunks that fit global 
memory 

•  Load a data chunk 
from global memory 
into shared memory 

•  Each data chunk is 
processed by a 
thread block 

•  Copy results from 
shared memory back 
to global memory 

•  Optimization 1: 
Maximize independent 
parallelism 

Phase A 

• Copy Table1 from Host PC to CUDA Global 
Memory 

• Copy Table 2 from Host PC to CUDA Global 
Memory 

Phase B 
• Encode Table 1 in Bloom Filter 

Phase C 
• Encode Table 2. Test presence in Bloom Filter 

Phase D 
• Compute Semantic Similarity using Filtered 

elements 



Phase A – Copy Data from Host to 
GPU 
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•  Copy two tables to be compared into CUDA global Memory 
-  Data has to be explicitly copied into CUDA Global Memory 
-  Optimization 2: Data structure is flattened to increase coalesced memory 

accesses 
-  Maximize the available PCIe bandwidth (76.8 Gb/s for NVIDIA C870) 



Phase B – Encode Co-efficient Table 
1 in Bloom Filter 
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•  Encode Table1 (Document Basis Coefficient Table) in Bloom Filter 
-  The ith Doc_Basis term is hashed using two hash functions 
-  “k” additional Bloom Filter Indices are generated using:  
 
-  Turn every Index Position “1” in BF bit array in CUDA texture Memory 
-  Optimization 3: At least n1 threads are launched. Limit the number of blocks 

and increase the number of threads. Increases shared memory reuse.  



Phase C – Encode & Test Table 2 
using Bloom Filter  
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•  Encode Table2 in Bloom Filter, Test 
-  The ith Query_Basis term is hashed using same two hash functions 
-  “k” additional Bloom Filter Indices are generated 
-  Those index positions are tested in BF bit array in CUDA texture Memory 
-  At least n2 threads are launched.  

-  If all indices are “1”, Query_Basisi is a “filtered element”, store Index (i) 
-  Optimization 4: Shared memory is inaccessible after end of kernel. This data is transferred 

to Global Memory at the end of each thread block 



Phase D – Compute Semantic 
Similarity using Filtered elements 
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•  Extract corresponding scalar coefficients, multiply and sum 
-  The index of the potential match in Table 2 is used to lookup Coeff2 

-  The corresponding match in Table 1 is used to lookup Coeff1 

-  The same kernel performs multiplication (interim products) 
-  Intermediate products from multiple threads are summed in parallel.  



Other Algorithmic Optimizations 
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•  Partitioning the computation to keep all stream cores busy 
-  Optimization 5: Multiple threads, multiple thread blocks in constant use 

 

•  Monitoring per-processor resource utilization 
-   Optimization 6: Low utilization per thread block allows multiple active 

blocks per multi-processor 
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•  Introduction 
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•  Key steps in computation 
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Experimental Setup 

•  Experimental setup 
•  Experimental Parameters 

•  Table Sizes (N) 
•  Similarity between Tables (c) 
•  CUDA Parameters (num_bocks, threads / block) 

•  Experimental Measurements 
•  Execution Time 
•  Power/Energy 
•  Throughput (Comparisons / sec) 
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Device Characteristics Values 

GPU – # Stream 
Processors / cores 

128/16 
(Nvidia Tesla C870) 

Core Frequency 600 Mhz 

CUDA Toolkit 3.1 

Interface 16x PCI-Express 

Memory Clock 1.6 GHz 

Global Memory 1.6GB 

Constant Memory 65KB 

Shared Memory/block 16KB 

Registers per block 8192 

Number of threads per 
block 

512 

Memory Bus Bandwidth 76.8 GB/s,  
384 bit-wide GDDR3 

Warp Size (Number of 
threads per thread 
processor) 

32 

CPU – P4 2 GB RAM, Ubuntu 9.10 



Results - Execution Time Profiling 
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•  Exponential increase in CPU execution time for large tables 
•  Same dataset on a GPU is up to 4x faster (similarity c=10%) 
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Results - Power Profiling 
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•  Measured using WattsUp Power Meter. (Measures Mains Power) 
•  GPU dynamic power is lower but approaches that of a CPU for N>50000 
•  GPU’s are known to be energy-efficient but not necessarily power-efficient                       

CPU-GPU Power Characteristic Value 

System Base Power 115W 

System Idle Power (GPU cold 
shutdown) 

150W 

System Idle Power (GPU Awake, 
Idle) 

186W 

GPU Idle Power 36W 0 
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Number of Entries (Terms) in Table 1 & 2 (n1=n2=N) 

GPU Dynamic Power(W) 
CPU Dynamic Power(W) 



Results - Energy Saved per 
Comparison 
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Table Size 
(N) 

CPU 
Execution 
Time (s) 

CPU Average 
Power (W) 

GPU 
Execution 
Time (s) 

GPU 
Average 

Power (W) 

Energy 
Saved 

(%) 
5k 0.18 232 0.05 159 79.65 

10k 0.74 239 0.21 156 77.64 
50k 20.0 241 4.93 188 77.27 

100k 82.4 246 19.57 227 77.96 
150k 185.3 251 43.83 233 78.04 

•  Computing Energy Saved (Wh%) 
-  Experiments over 5000<N<150000, Similarity between tables: c=75% 
-  Energy savings ~78% per comparison 
-  A future “semantic” search engine can either: 

-  reduce energy footprint or  
-  increase throughput with same footprint  



Results - Profiling Semantic 
Comparator Kernels on the GPU 
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•  Profiling Semantic Kernels 
-  Data copy from CPU to GPU (Phase A) ceases to be a bottleneck for N>5k 
-  Extracting Scalar coefficients (Phase D) becomes a bottleneck 
-  Computing Hash Functions, Insertion into a Bloom Filter (Phases B, C) 

computationally negligible                       

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N) 



Results - Throughput Improvement 
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Table Size 
(N) 

CPU Throughput 
(comparisons / s) 

GPU Throughput 
(comparisons / s) 

Improvement 

5k 53996.91 173097.43 3.20 
10k 13458.19 46725.69 3.47 
50k 499.40 2025.81 4.05 

100k 121.39 510.85 4.20 
150k 53.94 228.12 4.22 

•  Improvement in Throughput                 
-  Ran experiments with randomly varying similarity between tables for given N  
-  Throughput was defined as the inverse of the averaged execution time for a 

given N 
-  GPU throughput improvement is higher for larger values of N 
-  For smaller values of N, the overhead of data transfer from CPU to GPU 

dominates                                                                                                                                                                                               
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•  Conclusion 



Conclusion 

•  Semantic search requires introduction of 
fine-grained parallelism at compute nodes 

•  Search Engine Precision 
–  Use Tensor Method for meaning representation 

•  Search Engine Scalability 
–  Handle explosive growth in coefficient tables within 

compute nodes 

–  Leverage off-the-shelf hardware like GPU’s as co-
processors 

•  Search Engine Energy Consumption 
–  GPU based semantic comparator has extraordinary 

energy efficiency 

•  We have designed GPU based co-processor 
that provides 4x speedup and 78% energy 
saving over a traditional CPU for semantic 
search 
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Precision 
Meaning-based search 

Low Energy 
Consumption 



Optimizing a Semantic Comparator using CUDA-
enabled Graphics Hardware 

Thank You 
 

Q&A 



Optimizing a Semantic Comparator using CUDA-
enabled Graphics Hardware 

Appendix 

(Extra Slides) 



Comparison with prior art 
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Characteristics Traditional 
Microprocessors 

GPGPU ASIC 

Time/Cycles Worst 
performing 

Medium 24 cycles @ 
realizable clock 

frequency 
Energy Savings Worst 

performing 
Moderately high Very High 

Adoption Cost Low Intermediate High fabrication, 
development, 

integration costs. IO 
issues not addressed 

Overall 
characterization 

Low speed, Low 
Cost 

Balanced Cost 
and Speed 

High Speed, high cost 



Future Work 

•  Memory I/O Issues 
–  Transmit only hashed dataset to GPU 

•  Will reduce dataset from Nx40x2 to Nx8x2 bytes per tables (5 
times) 

–  Transmit only one Hash instead of two to GPU 
•  Compute the second set of hashes in the GPU from the first 
•  Will reduce dataset from Nx8x2 to Nx8x1 

•  Can not Call one kernel from another 
–  Control has to pass through the CPU 

•  Vary GPU Parameters 
–  Experimentation with Multiple Grids (In this paper a single grid was 

used) 
–  Further experimentation with varying number of blocks, number of 

threads per block 
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Challenge – Explosive Growth in 
Number of Terms with Tensor Model 

09/19/2011 35 

a b
c

a b c d

g hd e f

e

a b c

d e fa b c g h i 

Representation of intent Number of Index Terms 
with Vector Method 

Number of Index Terms 
with Tensor Method 

3 

5 

8 

9 

7 

31 

255 

511 



04/20/2010 36 

Current Search Paradigm 

•  Vector based models 
–  Assign weights to keywords 
–  Compute similarity using dot product 

order
1
ordertook

1
tookmanager

1
managersales

1
sales

1 Vs    Vs    Vs    Vs    D +++=

“The sales manager took the order.” 

Scalar weight 

/ coefficient denoting 
presence of the term 

Descriptor 
representing 

meaning of the 
entire text 

Basis vector representing the 
term “sales” 



Comparing Current v/s Future 
Methods 
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•  Creating Coefficient Tables 
-  First column shows terms, Second Column shows coefficients 

•  Tensor Method introduces two additional steps 
-  Concept Tree, Tensor Form 
-  More computations, but increased precision.  



Future – A Semantic Search Engine 
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•  Reorganize the 
index shards of 
a search 
engine 

-  Small World 
Network 

-  Reduce Query 
Rate to <Q/
Ns<<Q 

-  Query resolution 
is guaranteed 
within a average 
of 3 hops 

-  What is the 
downside?   

Front-End Web App 

Index Servers Doc Servers 

I0 I1 I2 I3 INs-1 INs 

I0 I1 I2 I3 INs-1 INs 
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Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp 

Query Processor Document Processor 
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Approach 

•  Use Tensor Based Representation for meaning. 

•  Meaning Comparison based on dot product of the 

tensors. 
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Conversion of a Tree to a Tensor 
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Example of a specific concept tree 

Generic “Concept” tree with C Child Nodes, Depth D, L leaves 

•  Salient Features 
-  Concept Tree: 

Hierarchical acyclic 
directed n-ary tree. 

-  Lead nodes represent 
terms whereas the tree 
describes inter-
relationships 

•  Expansion of Tree 
-  Bottoms-up. Make all-

possible polyadic 
combinations 

-  Generic Case (Assume):  
-  Intermediate Node I 
-  “C” Child Nodes 
-  One child node “P” contains 

“L” leaves 
-  Number of Terms at DI due 

to P will be 2L-1 
-  Each of the C nodes will 

produce 2n1+n2+nC -1 terms 
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Tensor comparison 





++++

+++

csbsasas

bsasc abs

1

7

1

6

1

5

1

4

1

3

1

2

1

1

b

cc

1) (          TT  )T ,(TSimilarity 2
6

1
7

2
5

1
6

2
7

1
52121 <++=•= ssssss





++++

+++

ascsbsbs

asasabs

2

7

2

6

2

5

2

4

2

3

2

2

2

1

c

cbc

Tensor (T1) 

Tensor (T2) 
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1.  Identify common basis vectors 
2.  Multiply scalar coefficients 
3.  Find sum of all products 
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Dot product challenge 
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•  When Tensors are large, identification of common basis 
vectors is time consuming. 

•  For two Tensors of size n1, n2 

–  Search is O(n1.n2) or O(n1. log n2) 

•  Can we improve upon this? 
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Bloom Filters 

•  Compact representation 
of a set. 
–  m bit long bit vector 
–  k hash functions 
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Bit 
Array 

F2(Idi)= 2 
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Hash Funcs. 

Element ”X” 

Fk(Idi)= j 
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Bloom Filters 

•  Insertion 
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Bloom Filters 

•  Testing for presence (Membership test) 

Bit 
Array 

Hash Funcs. 

F2(Idi)= 2 

F1(Idi)= 0 

Fk(Idi)= j 

Element ”X” 
1 
0 
1 
0 
1 

1 
0 

0 
1 
2 
3 
4 

m-2 
m-1 

1 

• Can have false positives 

• Never have false negative 

• False Positive rate can be reduced by 
choosing large m and optimal k value. 

For n=103 elements, 
 k= 7, m = 10240 bits 

Probability of False positive ~ 8x10-3 
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Data Structure 
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Coefficient table Bloom Filter 

Hash Funcs. 
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