
Optimizing a Semantic Comparator
using CUDA-enabled Graphics

Hardware

Aalap Tripathy

Suneil Mohan, Rabi Mahapatra

Embedded Systems and Codesign Lab

codesign.cse.tamu.edu
(Presented at ICSC 2011, September 19, 2011 in Palo Alto, CA)

09/19/2011 2

Overview

•  Introduction
•  Current v/s future technologies
•  Key steps in computation
•  Description of architecture
•  Experimental Setup & Results
•  Conclusion

09/19/2011 3

Introduction
•  Search is a key activity on the Internet

–  13 billion queries a month (3500/sec)

–  Growing rapidly (38% annually)

•  Search Engines need to be Precise
–  Increased user expectations from search results

–  Not 200 links but few relevant documents

•  Search Engines need to be Scalable
–  Search engines deployed as distributed systems

–  Newer methods make more computational demand

•  Search Engines need to consume Low Energy
–  Tens of Mega Watts (12.5 MW/year)

–  Coarse-grained, task-parallel approach is insufficient

•  Objective: Deploy meaning-based search to enhance search-quality while
consuming less energy and meeting time constrains

Precision
Meaning-based search

Low Energy
Consumption

Current Search Engines

09/19/2011 4

Front-End Web App

Index Servers Doc Servers

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Query Processor Document Processor

q!

(Scor
e, do

cid)!

(URL,snippet)!

URL,Snippets!

Current Search Paradigm – Vector
Method

09/19/2011 5

D1 = sAmerican
1 V

American + sMan

1 V

Man + sate
1 V

ate + sIndian
1 V

Indian + sFood
1 V

Food

“The American man ate Indian food.”

Scalar weight
/ coefficient denoting
relative importance of the
term

Descriptor
representing

meaning of the
entire text

Basis vector representing the
term “American”

•  Vector Methods can not differentiate between two
documents containing the same keywords

-  “American man ate Indian food” v/s “Indian man ate American food”
-  Produces hundreds of irrelevant results – “no precision”

-  Hundreds of redundant operations performed in the process
-  Tens of MW of power consumed in the process

Future Search paradigm - Tensor
Method

09/19/2011 6

++++

+++

csbsasbas

cbscascbas

7654

321

The American man
ate Indian food

The Indian man ate
American food

c
a be da b d e

c

•  Tensor methods differentiate documents containing same
keywords
-  Captures the relationship between terms
-  At what cost? – Exponentially larger number of terms

s1

a

e

c

+ s2

a

c

+ s3

e

c

+

s4

a

e

+ s5 a

+ s6 e

+ s7 c

+

Basis vector terms

 ,"ate americanman " cba , "ateamerican " cb

 ,"americanman " ba ,ate"" c ,american"" b ,man"" a

==

====

Basis vector terms
a

 = "man", e

 = "Indian", c

 = "ate",

a

e

= " man Indian ",

e

c

= " Indian ate " ,

a

e

c

 = " man Indian ate ",

(31 Terms) (31 Terms)

04/20/2010 7

Semantic Comparison using
Tensors

++++

+++

csbsasas

bsasc abs

1

7

1

6

1

5

1

4

1

3

1

2

1

1

b

cc

1) (TT)T ,(TSimilarity 2
6

1
7

2
5

1
6

2
7

1
52121 <++=•= ssssss

s1
2

ae

c

+ s2

2

ac

+ s3

2

ec

+

s4
2

ae

+ s5

2
b + s6

2
c + s7

2
a +

Tensor (T1)

Tensor (T2)

(The american man
ate indian food)

(The indian man ate
american food)

1.  Identify common basis vectors
2.  Multiply scalar coefficients
3.  Find sum of all products

09/19/2011 8

Overview

•  Introduction
•  Current v/s future technologies
•  Key steps in computation
•  Challenges
•  Description of architecture
•  Experimental Setup & Results
•  Conclusion

Key Steps in Semantic Computation

09/19/2011 9

•  For two Tensors of size n1, n2, Search is O(n1.n2) or O(n1. log n2)

•  Can we improve upon this?

Bloom Filters

09/19/2011 10

•  Bloom Filter – Enables Compact representation of a Set
-  Parameters:

•  Number of elements to be inserted (m)
•  Size of the Bloom Filter (sizen)
•  Number of Indices used to represent each element (k)

-  Probability of false positives can be controlled

04/20/2010 11

Details of Comparison

Set of BF
bit indices

{ xi: 0 ≤ xi ≤ sizen }

{ 0, 2,…5 }

{…}

 Coeffs Tensor
id

si = 0.2

s1

sn

Id1

Idi

Idn

1
0
1
0
0

1
0

0
1
2
3
4

Sizen-2
Sizen-1

Set of BF
bit indices

{ xi: 0 ≤ xi ≤ sizen }

{ 0, 2,…5 }

{…}

 Coeffs Tensor
id

si = 0.4

s1

sn

Id1

Idi

Idn

Coefficient table of Query Tensor (Table 2)

Coefficient table of Doc Tensor (Table 1) Bloom filter of Doc Tensor

.........TT 2121
21 ++++=• jjii ssss

1.  Identify common
basis vectors
(filtered)

2.  Multiply coefficients

3.  Compute sum of
products

09/18/2011 12

Overview

•  Introduction
•  Current v/s future technologies
•  Key steps in computation
•  Challenges
•  Description of architecture
•  Experimental Setup & Results
•  Conclusion

Architecture Description - CUDA

09/19/2011 13

•  CUDA
-  Compute Unified Device Architecture

-  Device Architecture spec
-  An extension to C (library, API,

compiler)

•  GPGPU uses heterogeneous parallel
computing model
-  Kernel is called by host and run by GPU
-  Each SIMD processor executes same

instruction over different data elements in
parallel

-  Can process thousands of threads
simultaneously.

-  The number of logical threads and thread
blocks surpasses the number of physical
execution units

Architecture Description – CUDA
Memory Model

09/19/2011 14

•  CUDA Memory Model
-  Threads

-  Registers (per thread)
-  Local Memory (off-chip)

-  Blocks
-  Shared Memory

 between threads
-  Device

-  Global Memory
§  between kernels

-  Constant Memory
§  Read only, store

invariants
-  Texture Memory

§  limited but can
cache parts of
Global Memory

Semantic Comparison using
CUDA

15

•  CUDA Programming
Model

•  Split a task into
subtasks

•  Divide input data into
chunks that fit global
memory

•  Load a data chunk
from global memory
into shared memory

•  Each data chunk is
processed by a
thread block

•  Copy results from
shared memory back
to global memory

•  Optimization 1:
Maximize independent
parallelism

Phase A

• Copy Table1 from Host PC to CUDA Global
Memory

• Copy Table 2 from Host PC to CUDA Global
Memory

Phase B
• Encode Table 1 in Bloom Filter

Phase C
• Encode Table 2. Test presence in Bloom Filter

Phase D
• Compute Semantic Similarity using Filtered

elements

Phase A – Copy Data from Host to
GPU

09/19/2011 16

•  Copy two tables to be compared into CUDA global Memory
-  Data has to be explicitly copied into CUDA Global Memory
-  Optimization 2: Data structure is flattened to increase coalesced memory

accesses
-  Maximize the available PCIe bandwidth (76.8 Gb/s for NVIDIA C870)

Phase B – Encode Co-efficient Table
1 in Bloom Filter

09/19/2011 17

•  Encode Table1 (Document Basis Coefficient Table) in Bloom Filter
-  The ith Doc_Basis term is hashed using two hash functions
-  “k” additional Bloom Filter Indices are generated using:

-  Turn every Index Position “1” in BF bit array in CUDA texture Memory
-  Optimization 3: At least n1 threads are launched. Limit the number of blocks

and increase the number of threads. Increases shared memory reuse.

Phase C – Encode & Test Table 2
using Bloom Filter

09/19/2011 18

•  Encode Table2 in Bloom Filter, Test
-  The ith Query_Basis term is hashed using same two hash functions
-  “k” additional Bloom Filter Indices are generated
-  Those index positions are tested in BF bit array in CUDA texture Memory
-  At least n2 threads are launched.

-  If all indices are “1”, Query_Basisi is a “filtered element”, store Index (i)
-  Optimization 4: Shared memory is inaccessible after end of kernel. This data is transferred

to Global Memory at the end of each thread block

Phase D – Compute Semantic
Similarity using Filtered elements

09/19/2011 19

•  Extract corresponding scalar coefficients, multiply and sum
-  The index of the potential match in Table 2 is used to lookup Coeff2

-  The corresponding match in Table 1 is used to lookup Coeff1

-  The same kernel performs multiplication (interim products)
-  Intermediate products from multiple threads are summed in parallel.

Other Algorithmic Optimizations

09/19/2011 20

•  Partitioning the computation to keep all stream cores busy
-  Optimization 5: Multiple threads, multiple thread blocks in constant use

•  Monitoring per-processor resource utilization
-  Optimization 6: Low utilization per thread block allows multiple active

blocks per multi-processor

09/19/2011 21

Overview

•  Introduction
•  Current v/s future technologies
•  Key steps in computation
•  Description of architecture
•  Experimental Setup & Results
•  Conclusion

Experimental Setup

•  Experimental setup
•  Experimental Parameters

•  Table Sizes (N)
•  Similarity between Tables (c)
•  CUDA Parameters (num_bocks, threads / block)

•  Experimental Measurements
•  Execution Time
•  Power/Energy
•  Throughput (Comparisons / sec)

09/19/2011 22

Device Characteristics Values

GPU – # Stream
Processors / cores

128/16
(Nvidia Tesla C870)

Core Frequency 600 Mhz

CUDA Toolkit 3.1

Interface 16x PCI-Express

Memory Clock 1.6 GHz

Global Memory 1.6GB

Constant Memory 65KB

Shared Memory/block 16KB

Registers per block 8192

Number of threads per
block

512

Memory Bus Bandwidth 76.8 GB/s,
384 bit-wide GDDR3

Warp Size (Number of
threads per thread
processor)

32

CPU – P4 2 GB RAM, Ubuntu 9.10

Results - Execution Time Profiling

09/19/2011 23

•  Exponential increase in CPU execution time for large tables
•  Same dataset on a GPU is up to 4x faster (similarity c=10%)

0
20
40
60
80

100
120
140
160
180
200

1000 5000 10000 50000 100000 150000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

GPU_Exec_Time(ms)
CPU_Exec_Time(ms)

Results - Power Profiling

09/19/2011 24

•  Measured using WattsUp Power Meter. (Measures Mains Power)
•  GPU dynamic power is lower but approaches that of a CPU for N>50000
•  GPU’s are known to be energy-efficient but not necessarily power-efficient

CPU-GPU Power Characteristic Value

System Base Power 115W

System Idle Power (GPU cold
shutdown)

150W

System Idle Power (GPU Awake,
Idle)

186W

GPU Idle Power 36W 0

50

100

150

200

250

300

1000 5000 10000 50000 100000 150000

D
yn

am
ic

 P
ow

er
 (W

)

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

GPU Dynamic Power(W)
CPU Dynamic Power(W)

Results - Energy Saved per
Comparison

09/19/2011 25

Table Size
(N)

CPU
Execution
Time (s)

CPU Average
Power (W)

GPU
Execution
Time (s)

GPU
Average

Power (W)

Energy
Saved

(%)
5k 0.18 232 0.05 159 79.65

10k 0.74 239 0.21 156 77.64
50k 20.0 241 4.93 188 77.27

100k 82.4 246 19.57 227 77.96
150k 185.3 251 43.83 233 78.04

•  Computing Energy Saved (Wh%)
-  Experiments over 5000<N<150000, Similarity between tables: c=75%
-  Energy savings ~78% per comparison
-  A future “semantic” search engine can either:

-  reduce energy footprint or
-  increase throughput with same footprint

Results - Profiling Semantic
Comparator Kernels on the GPU

09/19/2011 26

•  Profiling Semantic Kernels
-  Data copy from CPU to GPU (Phase A) ceases to be a bottleneck for N>5k
-  Extracting Scalar coefficients (Phase D) becomes a bottleneck
-  Computing Hash Functions, Insertion into a Bloom Filter (Phases B, C)

computationally negligible

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

Results - Throughput Improvement

09/19/2011 27

Table Size
(N)

CPU Throughput
(comparisons / s)

GPU Throughput
(comparisons / s)

Improvement

5k 53996.91 173097.43 3.20
10k 13458.19 46725.69 3.47
50k 499.40 2025.81 4.05

100k 121.39 510.85 4.20
150k 53.94 228.12 4.22

•  Improvement in Throughput
-  Ran experiments with randomly varying similarity between tables for given N
-  Throughput was defined as the inverse of the averaged execution time for a

given N
-  GPU throughput improvement is higher for larger values of N
-  For smaller values of N, the overhead of data transfer from CPU to GPU

dominates

09/19/2011 28

Overview

•  Introduction
•  Current v/s future technologies
•  Key steps in computation
•  Description of architecture
•  Experimental Setup & Results
•  Conclusion

Conclusion

•  Semantic search requires introduction of
fine-grained parallelism at compute nodes

•  Search Engine Precision
–  Use Tensor Method for meaning representation

•  Search Engine Scalability
–  Handle explosive growth in coefficient tables within

compute nodes

–  Leverage off-the-shelf hardware like GPU’s as co-
processors

•  Search Engine Energy Consumption
–  GPU based semantic comparator has extraordinary

energy efficiency

•  We have designed GPU based co-processor
that provides 4x speedup and 78% energy
saving over a traditional CPU for semantic
search

09/19/2011 29

Precision
Meaning-based search

Low Energy
Consumption

Optimizing a Semantic Comparator using CUDA-
enabled Graphics Hardware

Thank You

Q&A

Optimizing a Semantic Comparator using CUDA-
enabled Graphics Hardware

Appendix

(Extra Slides)

Comparison with prior art

04/20/2010 32

Characteristics Traditional
Microprocessors

GPGPU ASIC

Time/Cycles Worst
performing

Medium 24 cycles @
realizable clock

frequency
Energy Savings Worst

performing
Moderately high Very High

Adoption Cost Low Intermediate High fabrication,
development,

integration costs. IO
issues not addressed

Overall
characterization

Low speed, Low
Cost

Balanced Cost
and Speed

High Speed, high cost

Future Work

•  Memory I/O Issues
–  Transmit only hashed dataset to GPU

•  Will reduce dataset from Nx40x2 to Nx8x2 bytes per tables (5
times)

–  Transmit only one Hash instead of two to GPU
•  Compute the second set of hashes in the GPU from the first
•  Will reduce dataset from Nx8x2 to Nx8x1

•  Can not Call one kernel from another
–  Control has to pass through the CPU

•  Vary GPU Parameters
–  Experimentation with Multiple Grids (In this paper a single grid was

used)
–  Further experimentation with varying number of blocks, number of

threads per block

04/20/2010 33

04/20/2010 34

References
•  S. Mohan, A. Tripathy, A. Biswas, and R. Mahapatra, "Parallel Processor Core for

Semantic Search Engines," presented at the Workshop on Large-Scale Parallel Processing
(LSPP) to be held at the IEEE International Parallel and Distributed Processing
Symposium (IPDPS'11), Anchorage, Alaska, USA, 2011.

•  S. Mohan, A. Biswas, A. Tripathy, J. Panigrahy, and R. Mahapatra, "A parallel
architecture for meaning comparison," presented at the Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, Atlanta, GA 2010.

•  A. Biswas, S. Mohan, A. Tripathy, J. Panigrahy and R. Mahapatra, "Semantic Key for
Meaning Based Searching", in 2009 IEEE International Conference on Semantic
Computing (ICSC 2009),14-16 September 2009, Berkeley, CA, USA.

•  A. Biswas, S. Mohan, and R. Mahapatra, "Search Co-ordination by Semantic Routed
Network", in 18th International Conference on Computer Communications and Networks,
(ICCCN 2009) ,2009, San Francisco, CA, USA.

•  A. Biswas, S. Mohan, J. Panigrahy, A. Tripathy, and R. Mahapatra, "Representation of
complex concepts for semantic routed network," in 10th International Conference on
Distributed Computing and Networking, (ICDCN 2009), 2009, Hyderabad, pp 127-138

•  A. Biswas, S. Mohan and R. Mahapatra, "Optimization of Semantic Routing Table", in
17th International Conference on Computer Communications and Networks, (ICCCN
2008), 2008, US. Virgin Islands

Challenge – Explosive Growth in
Number of Terms with Tensor Model

09/19/2011 35

a b
c

a b c d

g hd e f

e

a b c

d e fa b c g h i

Representation of intent Number of Index Terms
with Vector Method

Number of Index Terms
with Tensor Method

3

5

8

9

7

31

255

511

04/20/2010 36

Current Search Paradigm

•  Vector based models
–  Assign weights to keywords
–  Compute similarity using dot product

order
1
ordertook

1
tookmanager

1
managersales

1
sales

1 Vs Vs Vs Vs D +++=

“The sales manager took the order.”

Scalar weight

/ coefficient denoting
presence of the term

Descriptor
representing

meaning of the
entire text

Basis vector representing the
term “sales”

Comparing Current v/s Future
Methods

09/19/2011 37

•  Creating Coefficient Tables
-  First column shows terms, Second Column shows coefficients

•  Tensor Method introduces two additional steps
-  Concept Tree, Tensor Form
-  More computations, but increased precision.

Future – A Semantic Search Engine

09/19/2011 38

•  Reorganize the
index shards of
a search
engine

-  Small World
Network

-  Reduce Query
Rate to <Q/
Ns<<Q

-  Query resolution
is guaranteed
within a average
of 3 hops

-  What is the
downside?

Front-End Web App

Index Servers Doc Servers

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

I0 I1 I2 I3 INs-1 INs

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Pool0 Pool1 Pool2 Pool3 PoolNp-1 PoolNp

Query Processor Document Processor

q!

(Sco
re,

doci
d)!

(URL,snippet)!

04/20/2010 39

Approach

•  Use Tensor Based Representation for meaning.

•  Meaning Comparison based on dot product of the

tensors.

++++

+++

csbsasbas

cbscascbas

7654

321The american man
ate indian food

Basis vector terms

 ,"ate americanman " cba , "ateamerican " cb

 ,"americanman " ba ,ate"" c ,american"" b ,man"" a

==

====

Conversion of a Tree to a Tensor

04/20/2010 40

Example of a specific concept tree

Generic “Concept” tree with C Child Nodes, Depth D, L leaves

•  Salient Features
-  Concept Tree:

Hierarchical acyclic
directed n-ary tree.

-  Lead nodes represent
terms whereas the tree
describes inter-
relationships

•  Expansion of Tree
-  Bottoms-up. Make all-

possible polyadic
combinations

-  Generic Case (Assume):
-  Intermediate Node I
-  “C” Child Nodes
-  One child node “P” contains

“L” leaves
-  Number of Terms at DI due

to P will be 2L-1
-  Each of the C nodes will

produce 2n1+n2+nC -1 terms

04/20/2010 41

Tensor comparison

++++

+++

csbsasas

bsasc abs

1

7

1

6

1

5

1

4

1

3

1

2

1

1

b

cc

1) (TT)T ,(TSimilarity 2
6

1
7

2
5

1
6

2
7

1
52121 <++=•= ssssss

++++

+++

ascsbsbs

asasabs

2

7

2

6

2

5

2

4

2

3

2

2

2

1

c

cbc

Tensor (T1)

Tensor (T2)

(The american man
ate indian food)

(The indian man ate
american food)

1.  Identify common basis vectors
2.  Multiply scalar coefficients
3.  Find sum of all products

04/20/2010 42

Dot product challenge

++++

+++

csbsasbas

cbscascbas

7654

321(The american man
ate indian food)

•  When Tensors are large, identification of common basis
vectors is time consuming.

•  For two Tensors of size n1, n2

–  Search is O(n1.n2) or O(n1. log n2)

•  Can we improve upon this?

04/20/2010 43

Bloom Filters

•  Compact representation
of a set.
–  m bit long bit vector
–  k hash functions

 1
0
1
0
1

1
0

0
1
2
3
4

m-2
m-1

Bit
Array

F2(Idi)= 2

F1(Idi)= 0

Hash Funcs.

Element ”X”

Fk(Idi)= j

04/20/2010 44

Bloom Filters

•  Insertion

Bit
Array

Hash Funcs.

F2(Idi)= 2

F1(Idi)= 0

Fk(Idi)= j

Element ”X”
1
0
1
0
1

1
0

0
1
2
3
4

m-2
m-1

0
0
0
0
0

0
0

0
1
2
3
4

m-2
m-1

04/20/2010 45

Bloom Filters

•  Testing for presence (Membership test)

Bit
Array

Hash Funcs.

F2(Idi)= 2

F1(Idi)= 0

Fk(Idi)= j

Element ”X”
1
0
1
0
1

1
0

0
1
2
3
4

m-2
m-1

1

• Can have false positives

• Never have false negative

• False Positive rate can be reduced by
choosing large m and optimal k value.

For n=103 elements,
 k= 7, m = 10240 bits

Probability of False positive ~ 8x10-3

04/20/2010 46

Data Structure

1
0
1
1
1

1
0

0
1
2
3
4

m-2
m-1

Bit
Array

++++

+++

csbsasbas

cbscascbas

7654

321(The american man
ate indian food)

Coefficient table Bloom Filter

Hash Funcs.

F2(Idi)= 2

F1(Idi)= 0
Bit Index Generation

Element ”ac”

Fk(Idi)= j

Id1
 = MD5(“ac”)

Set of BF

bit indices

 Coeffs Tensor
id

Set of BF

bit indices

{ 0, 2,…j }

 Coeffs Tensor
id

si = 0.2

Idi

Set of BF
bit indices

{ xi : 0 ≤ xi ≤ m }

{ 0, 2,…j }

{…}

 Coeffs Tensor
id

si = 0.2

s1

sn

Id1

Idi

Idn

