Improving interactive video retrieval by exploiting automatically-extracted video structural semantics

Vasileios Mezaris, Panagiotis Sidiropoulos, Ioannis Kompatsiaris

Informatics and Telematics Institute / Centre for Research and Technology Hellas

IEEE ICSC 2011, Palo Alto, September 2011

Overview

- Introduction problem formulation
- Related work
- Video structural semantics in interactive retrieval
- Automatic extraction of video structural semantics
- Experiments and results
- Conclusions

Introduction – problem formulation

- Semantic video retrieval is a key application
- Main challenge: bridge the semantic gap, between the possible video representations that are often:
 - machine-only-readable (e.g. low-level audio-visual features),
 - unreliable and incomplete (e.g. automatic visual concept detection results, user-assigned tags)
 - too specific to be meaningful when seen out of context (e.g. tag "Mary"),

and the specific and diverse information needs of every possible user

Introduction – problem formulation

- Bridging the semantic gap in video retrieval is attempted by means of:
 - New low-level video features
 - More reliable video concept detectors
 - Event detection from audio-visual data
 - **—** ...
 - Better interaction strategies (putting the human in the retrieval loop)
- In this work
 - We focus on interaction strategies
 - Examine the possibility of using information about the structure of the video (video scenes) for guiding the user's interaction

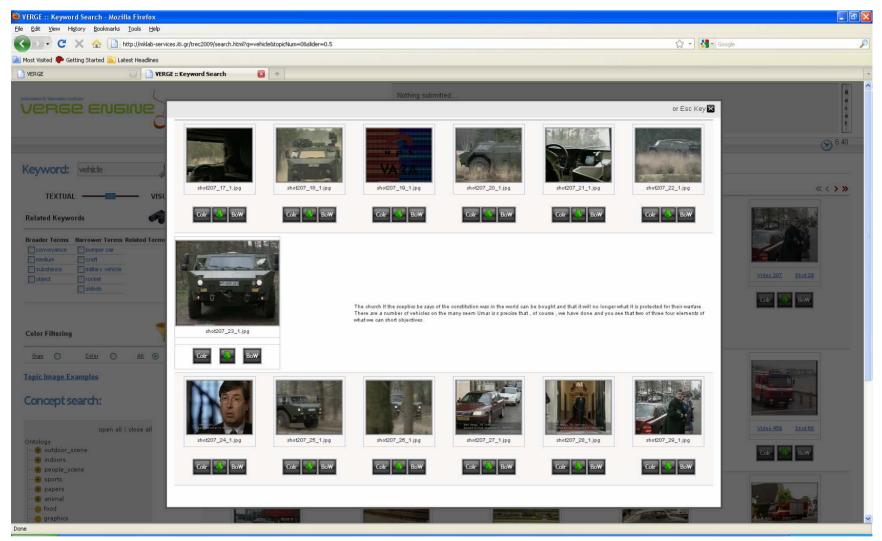
Related work

- Intelligent video retrieval is typically performed at the shot level, due to
 - Significant variability in the video content of an entire program
 - Need of users for retrieving only the bits of information that are of interest to them
- Thus, interactive video retrieval is all about assisting the user in searching and navigating within a large collection of video shots
- State-of-the-art
 - Different query formulations (e.g. query-by-text, query-by-example),
 - query expansion
 - relevance feedback
 - browsers for visualizing the collection or a subset of it according to different criteria (e.g. concept relevance, time), and others.

Related work

- Time information has been shown to be particularly important: issuing basic temporal queries, starting from a (found) positive sample
 - "Time treads" showing a sequential view of all the shots of a video (ForkBrowser and CrossBrowser)
 - Presentation of a fixed number of neighboring shots for each specified shot ("side shots")

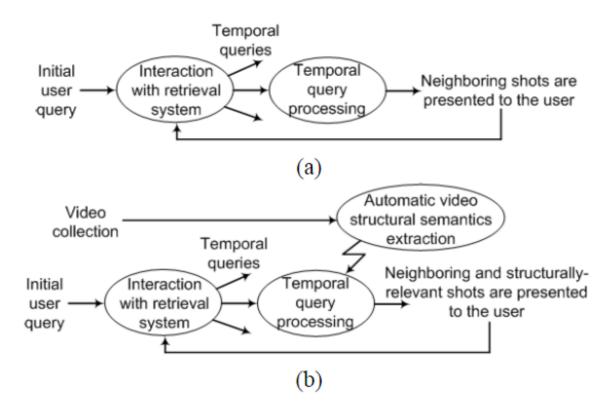
Related work



Structural semantics for retrieval

- Although temporal information is significant...
 - i.e, shots that are temporally close to a correctly retrieved shot are intuitively considered very likely to also be relevant to the query
- ...its use is not governed by solid rules: basic temporal queries rely on
 - ad hoc rules (e.g. "show N side shots", where N is fixed)
 - no rules at all (e.g. "time threads", which are a sequential view of the entire video, shot-by-shot)
- Our hypothesis
 - Automatically-extracted video structural semantics, i.e. the outcome of algorithms for video segmentation to scenes, can intelligently guide the user in visually inspecting a variable number of temporally neighboring shots that are most likely to also satisfy the query criteria

Structural semantics for retrieval



Structural semantics for retrieval

- Accepting this hypothesis could be straightforward if perfect scene segmentation results could be used...but this is not the case (assuming it does not exist, e.g. in documentaries, news,...)
 - Manually processing large collections of video is practically infeasible
 - SoA results of automatic techniques still deviate considerably from perfection
- So, the question is: can the results of existing SoA techniques for automatic video segmentation to scenes be useful in interactive retrieval?

Extraction of structural semantics

randomly selected parameter set also being calculated

The probability of a shot boundary also being a scene boundary is calculated by counting the STGs

Probabilistic

Merging

Probabilities are linearly combined; if a threshold *T* is exceeded, a scene change is declared

Scene

Boundaries

Additional information can be used (audio features, audio events), and more types of STGs can be created

Shot
Segmentation

Creation of
multiple STGs

Low-level visual
features

Creation of
multiple STGs

Visual Concept
Detectors

Low- and high-level visual

Advantages

Alleviates the need for STG construction parameter fine-tuning

- Effectively combines heterogeneous information
- The introduced parameters (V, T) can be easily optimized

information is treated separately

Extraction of structural semantics

- Six variants of this algorithm are used in our experiments
 - Each was evaluated separately
 - M1 Using low-level visual features only, optimal parameters
 - M2 Using low-level visual features only, parameters favoring oversegmentation
 - M3 Using low-level visual features only, parameters favoring undersegmentation
 - M4 Combining low-level visual features and concept detector responses, all 101 detectors used
 - M5 Combining low-level visual features and concept detector responses, 60 detectors selected according to AP
 - M6 Combining low-level visual features and concept detector responses, 50 detectors selected according to ΔAP

Dataset

- 1 One or more people walking up stairs
- 2 A door being opened
- 3 A person walking or riding a bicycle
- 4 Hands at a keyboard typing or using a mouse
- 5 A canal, river, or stream with some of both banks visible
- 6 A person talking on a telephone
- 7 A street market scene
- 8 A street protest or parade
- 9 A train in motion
- 10 Shots with hills or mountains visible

5 - Bus	15 - People dancing
J - Dus	
4 - Chair	14 - Person eating
5 - Cityscape	15 - Person playing musical instrum.
6 - Classroom	16 - Person playing soccer
7 - Demonstration or Protest	17 - Person riding a bicycle
8 - Doorway	18 - Singing
9 - Female human face closeup	19 - Telephone
10 - Hand	20 - Traffic intersection

- Three types of basic temporal queries (TQ) were evaluated
- TQ were issued for all positive samples of the 20+24 queries
 - 3322 TQ in response to single concept queries
 - 4704 TQ in response to complex queries

(a) Without considering scene boundaries:

query shot
$$s_i \rightarrow \text{show } s_j, \ j \in [i-N, \ i+N], \ N = const$$

(b) Based on scene boundary detection (considering a single scene):

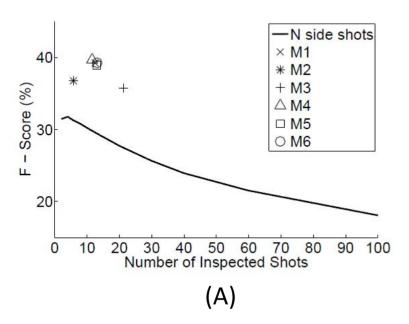
query shot
$$s_i \rightarrow \text{show all } s_j \in S_k | s_i \in S_k$$

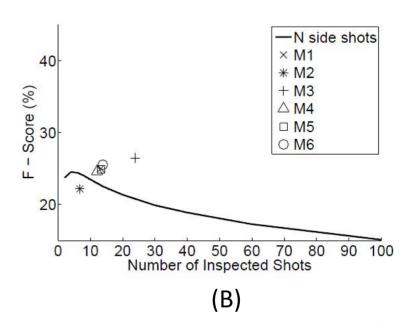
(c) Based on scene boundary detection (considering multiple scenes):

query shot
$$s_i \to \text{show all } s_j \in \{S_{k-X},...,S_{k+X}\} | s_i \in S_k$$
 and X is a positive integer

- Evaluation of the results of the basic temporal queries
 - Harmonic mean (F-score) of precision (P) and recall (R), F=2PR/(P+R)
 - Measures how successful each basic temporal querying strategy is in retrieving additional positive sample for the 20+24 considered queries, given that one such positive sample has already been found by the searcher and is used for launching a basic temporal query

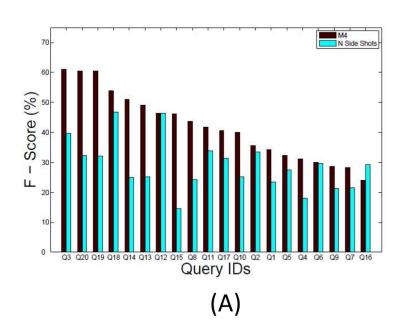
- F-score as a function of the number of shots returned by the temporal query (and thus inspected by the user)
 - Basic temporal query types (a) and (b), for (A) single-concept, and (B) complex queries

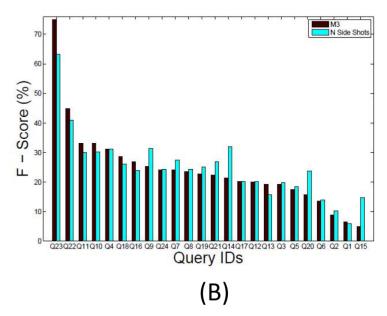




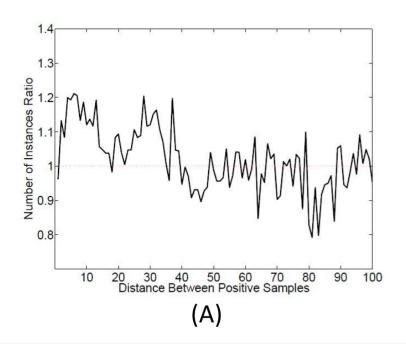
Results per query

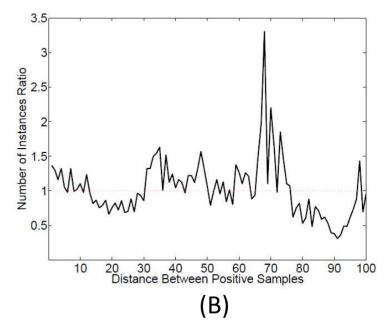
Basic temporal query types (a) and (b), for (A) single-concept, and (B) complex queries



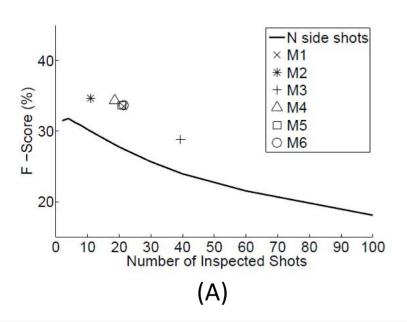


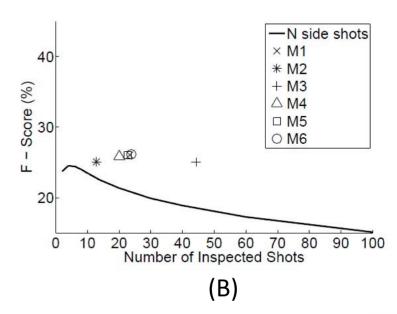
- Qualitative differences between single-concept and complex queries
 - (A) # positive samples for single-concept queries / # number of positive
 samples for complex queries, for every given distance between the samples
 - (B) similar ratio for the positive samples of two individual complex queries



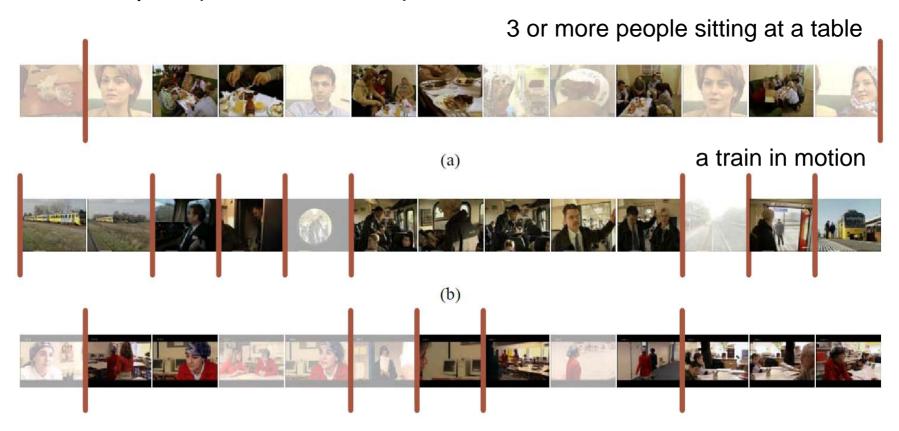


- F-score as a function of the number of shots returned by the temporal query (and thus inspected by the user)
 - Basic temporal query types (a) and (c), for (A) single-concept, and (B) complex queries





• Examples (success, failure)



Conclusions

- Using existing state-of-the-art scene segmentation algorithms for responding to basic temporal queries can indeed improve the efficiency and effectiveness of interactive retrieval
 - Demonstrated here on a large dataset
 - Considering heterogeneous single-concept and complex queries
 - Using 6 variations of a scene segmentation technique
- The gains are affected by
 - The nature of the queries and the dataset (which result in qualitative differences in the distribution of the distances between positive samples of a query)
 - The quality of scene segmentation (over-segmentation is a problem)

Questions?

More information:

http://www.iti.gr/~bmezaris

bmezaris@iti.gr

