OUTLINE

- CONTEXT
- METHOD
- EVALUATION
- SUMMARY
CONTEXT

- Written dialog – blogs, discussion forums

- Persuasion task: identify when a participant actively attempts to persuade others of an opinion
 - More specifically, when a participant explicitly expresses an opinion or belief (makes a *claim*) and gives support for his or her claim
 - Different types of support, but most common one (>92%) is *justification*
 - Justification defined as an argument in support of an expressed claim

- Justification task: for a pair of sentences, the first marked a claim, decide if the second is a justification of the claim
CONTEXT

- The corpus: LiveJournal blog threads
 - 309 threads, annotated for claims and justifications
 - Wide range of topics:
 - Discussion of current events
 - Film / book reviews
 - Personal diary-like blogs
 - How cool that internet meme is (zomg!!!!!11)
 - Non-standard language, low register, bad punctuation, sometimes ungrammatical
EXAMPLES

CLAIM: This is a great, great record.

JUSTIFICATION: I'm hesitant to say that kind of thing because I'm not a critic; but it is certainly in a league with Robyn's very best work. The Venus 3 come together as a band in a way I don't think they really did on O' Tarantula, and it just touches me very deeply.

CLAIM: I don't think Wilf will die.

JUSTIFICATION: Wilf's going to have to kill Ten to save Donna or something, 'cause of the whole 'you've never killed a man' thing that TV woman said.
OUTLINE

- CONTEXT
- METHOD
 - INTUITION AND THEORY
 - INDICATORS
 - WORD PAIR EXTRACTION
 - SUPERVISED LEARNING
- EVALUATION
- SUMMARY
OBSERVATION

- Justifications tend to be complex
 - The justification itself is likely to contain some argumentation/explanation, and therefore discourse relations

- Instead of

 „I am in pain, *I broke my arm*“,

 „I am in pain, *I slipped on a banana peel and broke my arm*“ [cause]
RHETORICAL STRUCTURE THEORY (RST)

- Mann and Thompson (1987)
- Defines and characterizes a set of discourse relations
- RST Treebank
Some relations typically contain a connector word or phrase – such as *but* for contrast. But..

- Sometimes it is omitted
- Can be replaced with a paraphrase (*on the other hand*)
- *But* is too common and ambiguous to be reliable, anyway
WORD PAIRS

- Appearance of certain word combinations can imply a particular relation

- Marcu and Echihabi (2002)
 - Used frequency of word appearance in text spans participating in fixed patterns to detect discourse relations

- Blair-Goldensohn et al. (2007)
 - Further developed method for cause and contrast.
WORD PAIR EXAMPLES

- „Its easy to flatter people, but its difficult to tell the truth and say something honest that might sound mean“
 (easy, difficult: contrast)

- „While slavery was a horrible thing, we just can't act like it never happened“
 (horrible, happened: concession)

- „Canon provides an overall better photography system, from body to sensor to optics (canon Lseries lenses are something out of this world).“
 (photography, sensor: elaboration)
WORD PAIRS

- The words in the examples are all *content words*.
 - Should be relevant independent of linguistic style and grammaticality
 - Can be applied to a variety of corpora, specifically the online discussions we are interested in
WORD PAIRS

- We are not interested in identifying the particular relation – many relations may contribute to argumentation...
- Instead of using fixed patterns with few standard indicators (but, because..), relax the patterns and allow many indicators
- First step: get a list of indicators
OUTLINE

- CONTEXT
- METHOD
 - INTUITION AND THEORY
 - INDICATORS
 - WORD PAIR EXTRACTION
 - SUPERVISED LEARNING
- EVALUATION
- SUMMARY
LISTS OF INDICATORS

- RST Treebank (Carlson et al., 2003) – a subset of the Wall Street Journal part of the Penn Treebank, annotated with RST discourse relations
- We chose 12 relations which are likely to participate in an attempt to make the reader accept a previously made claim:
 - Analogy
 - Antithesis
 - Cause
 - Concession
 - Consequence
 - Contrast
 - Evidence
 - Example
 - Explanation-argumentation
 - Purpose
 - Reason
 - Result
First, create an ordered list of likely indicators:

- For each relation (e.g., `cause`) collect all text from the RST Treebank which participates in it.
- Extract n-grams (1, 2, 3, 4 and 5-grams)
- Compute idf for each n-gram
- Compute the tf variant: \(tf^* = \frac{l_{ij}}{\sum_k l_{ik}} \)
 - \(l_{ik} \) is the number of relation instances where the n-gram \(k \) appears at least once.
- Sort n-grams for each relation by \(tf^*-idf \)
CREATING LIST OF INDICATORS

- Discard entries with a score less than 0.004
- Finally, go over the list manually from the top and remove irrelevant, ambiguous and domain-specific n-grams
 - The RST Treebank has a relatively narrow domain: *in New York* is the second-highest ranking trigram for the *evidence* relation...

- The result: 69 indicators, some of which are shared among multiple relations
LISTS OF INDICATORS

<table>
<thead>
<tr>
<th>Relation</th>
<th>Nb</th>
<th>Sample Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogy</td>
<td>15</td>
<td>as a, just as, comes from the same</td>
</tr>
<tr>
<td>Antithesis</td>
<td>18</td>
<td>although, even while, on the other hand</td>
</tr>
<tr>
<td>Cause</td>
<td>14</td>
<td>because, as a result, which in turn</td>
</tr>
<tr>
<td>Concession</td>
<td>19</td>
<td>despite, regardless of, even if</td>
</tr>
<tr>
<td>Consequence</td>
<td>15</td>
<td>because, largely because of, as a result of</td>
</tr>
<tr>
<td>Contrast</td>
<td>8</td>
<td>but the, on the other hand, but it is the</td>
</tr>
<tr>
<td>Evidence</td>
<td>7</td>
<td>attests, this year, according to</td>
</tr>
<tr>
<td>Example</td>
<td>9</td>
<td>including, for instance, among the</td>
</tr>
<tr>
<td>Explanation-argumentation</td>
<td>7</td>
<td>because, in addition, to comment on the</td>
</tr>
<tr>
<td>Purpose</td>
<td>30</td>
<td>trying to, in order to, so as to see</td>
</tr>
<tr>
<td>Reason</td>
<td>13</td>
<td>because, because it is, to find a way</td>
</tr>
<tr>
<td>Result</td>
<td>23</td>
<td>resulting, because of, as a result of</td>
</tr>
</tbody>
</table>
OUTLINE

- CONTEXT
- METHOD
 - INTUITION AND THEORY
 - INDICATORS
 - WORD PAIR EXTRACTION
 - SUPERVISED LEARNING
- EVALUATION
- SUMMARY
EXTRACTING WORD PAIRS

- The list of indicators is used to extract word pairs from English Wikipedia which co-occur with an indicator in the same sentence

- Two lists:
 - *Sides* - the first word occurs on the left and the second word on the right of the indicator.
 - 447,149,688 pairs
 - *Anywhere* – words may occur anywhere in the sentence (in order).
 - 1,017,190,824 pairs

- No stop words – we only want content words
- Pairs which appear less than 20 times are removed, reducing list sizes to 334,925 (*sides*) and 719,439 (*anywhere*)
OUTLINE

- CONTEXT
- METHOD
 - INTUITION AND THEORY
 - INDICATORS
 - WORD PAIR EXTRACTION
 - SUPERVISED LEARNING
- EVALUATION
- SUMMARY
Task: for each pair of sentences, the first marked a claim, decide if the second is a justification of the claim
Disjunctive word-pair feature for each indicator:

\[\phi_j = \begin{cases}
1 & \text{if the candidate sentence contains any pair } p \in P_j \text{ with some constraints} \\
0 & \text{otherwise}
\end{cases} \]

Three constraint variants:

- Unigrams – positive if either word appears
- Unordered – positive if both words appear, in any order
- Ordered – positive if both words appear in their original order
EXAMPLE

CLAIM: I don't think Wilf will die.

JUSTIFICATION: Wilf's going to have to kill Ten to save Donna or something, 'cause of the whole 'you've never killed a man' thing that TV woman said.

- *because* is an indicator for cause and reason; *in order to* is an indicator for purpose
- *(kill, save)* appear in Wikipedia around *in order to*
- *(kill, killed)* appear in Wikipedia around *because*
- Both features are positive, and the sentence classified as a justification
OUTLINE

- CONTEXT
- METHOD
- EVALUATION
- SUMMARY
EVALUATION

- 309 LiveJournal threads, annotated for claims and justifications
- 40 reserved for a test set, 269 used for training. 10-fold cross-validation used for development
- Data set of sentence pairs, composed by using all claims with all candidate justifications. Candidates are all sentences which belong to an entry that is equal or subsequent to that containing the claim and authored by the same participant
- 6636 training data points and 756 test instances. Approximately 10% are positive in both sets
BASELINES

1. Sentence following claim

2. High-recall heuristic: all sentences that are
 - In the same entry as the claim
 - No more than 4 sentences away from the claim

3. Hybrid: use the heuristic constraints, then a Naive Bayes classifier with 2 features:
 - Candidate length
 - Position of candidate: before or after the claim
 - Also a post-processing step which picks at most two justifications per claim

4. Hybrid + Bag-of-words: all words which appear more than 5 times in the data set, as individual features.
EVALUATED SYSTEMS

- Tested systems: Hybrid + additional features
 - Indicators as lexical features
 - Word-pair disjunctions [Unigrams]
 - Word-pair disjunctions [Unordered] anywhere
 - Word-pair disjunctions [Ordered] anywhere
 - Word-pair disjunctions [Unordered] sides
 - Word-pair disjunctions [Ordered] sides
 - Word-pair disjunctions (best from above) plus indicators

Word pair lists

- *Sides* – pairs from both sides of the indicator
- *Anywhere* – pairs from anywhere the sentence

Feature constraints

- [Unigrams] – either word appears
- [Unordered] – both words appear, in any order
- [Ordered] – both words appear in their original order
EVALUATION

<table>
<thead>
<tr>
<th>System</th>
<th>CV P</th>
<th>CV R</th>
<th>CV F</th>
<th>Test P</th>
<th>Test R</th>
<th>Test F</th>
</tr>
</thead>
<tbody>
<tr>
<td>next sentence</td>
<td>46.4</td>
<td>32.4</td>
<td>38.2</td>
<td>41.7</td>
<td>40</td>
<td>40.8</td>
</tr>
<tr>
<td>heuristic baseline</td>
<td>29</td>
<td>91</td>
<td>44</td>
<td>27.2</td>
<td>88.4</td>
<td>41.6</td>
</tr>
<tr>
<td>hybrid baseline</td>
<td>41.5</td>
<td>54.7</td>
<td>47.2</td>
<td>31.7</td>
<td>45.6</td>
<td>40.7</td>
</tr>
<tr>
<td>hybrid baseline + bag-of-words</td>
<td>41.4</td>
<td>48.6</td>
<td>44.7</td>
<td>37.5</td>
<td>43.7</td>
<td>40.4</td>
</tr>
<tr>
<td>hybrid baseline + indicators</td>
<td>41.5</td>
<td>54.7</td>
<td>47.2</td>
<td>31.7</td>
<td>45.6</td>
<td>40.7</td>
</tr>
<tr>
<td>hybrid baseline + unigrams</td>
<td>42.1</td>
<td>56.5</td>
<td>48.3</td>
<td>35.4</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>hybrid baseline + anywhere with ordering</td>
<td>35.6</td>
<td>20.9</td>
<td>26.3</td>
<td>34.9</td>
<td>17.5</td>
<td>23.3</td>
</tr>
<tr>
<td>hybrid baseline + anywhere with no ordering</td>
<td>38.2</td>
<td>19.8</td>
<td>26.1</td>
<td>41.7</td>
<td>19.8</td>
<td>26.9</td>
</tr>
<tr>
<td>hybrid baseline + sides with ordering</td>
<td>42.9</td>
<td>61.6</td>
<td>50.6</td>
<td>42.6</td>
<td>53.4</td>
<td>47.4</td>
</tr>
<tr>
<td>hybrid baseline + sides with no ordering</td>
<td>43</td>
<td>61.2</td>
<td>50.5</td>
<td>41.9</td>
<td>52.4</td>
<td>46.6</td>
</tr>
<tr>
<td>hybrid baseline + indicators + sides with no ordering</td>
<td>43.1</td>
<td>61.8</td>
<td>50.8</td>
<td>41.9</td>
<td>52.4</td>
<td>46.6</td>
</tr>
<tr>
<td>hybrid baseline + indicators + sides-no-stoplist with no ordering</td>
<td>42.1</td>
<td>58.2</td>
<td>48.8</td>
<td>37.1</td>
<td>47.6</td>
<td>41.7</td>
</tr>
</tbody>
</table>
EVALUATION

- Another experiment: single sentences, with no claims
- 8508 training data points, 1197 test
- No heuristic. Only word-pair disjunction features: [Unordered] sides (from best system)
- Baseline is greedy all-positive

<table>
<thead>
<tr>
<th>System</th>
<th>CV P</th>
<th>CV R</th>
<th>CV F</th>
<th>Test P</th>
<th>Test R</th>
<th>Test F</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>11.7</td>
<td>100</td>
<td>20.9</td>
<td>14.8</td>
<td>100</td>
<td>25.7</td>
</tr>
<tr>
<td>sides with no ordering</td>
<td>30.9</td>
<td>48.9</td>
<td>37.8</td>
<td>30.3</td>
<td>40</td>
<td>34.5</td>
</tr>
</tbody>
</table>
OUTLINE

- CONTEXT
- METHOD
- EVALUATION
- SUMMARY
We have proposed a method of identifying justifications in text, particularly suited to written dialog.

On the justification-for-claim task, the results of our best system are consistently better than those of 4 baselines and of weaker systems.

Without claims, could be used as a general argumentation detector, but we did not evaluate (no gold data).

The indicator list used to mine Wikipedia for word pairs is publicly available at

http://www.cs.columbia.edu/~orb